- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hermawan, Hendra (3)
-
Tanji, Ayoub (3)
-
Sakidja, Ridwan (2)
-
Boehlert, Carl J. (1)
-
Fan, Xuesong (1)
-
Feng, Rui (1)
-
Liaw, Peter K (1)
-
Liaw, Peter K. (1)
-
Lyu, Zongyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A family of TiHfZrNb high-entropy alloys has been considered novel biomaterials for high-performance, small-sized implants. The present work evaluates the role of niobium on passivation kinetics and electrochemical characteristics of passive film on TiHfZrNb alloys formed in Hanks’ simulated body fluid by analyzing electrochemical data with three analytical models. Results confirm that higher niobium content in the alloys reinforces the compactness of the passive film by favoring the dominance of film formation and thickening mechanism over the dissolution mechanism. Higher niobium content enhances the passivation kinetics to rapidly form the first layer, and total surface coverage reinforces the capacitive-resistant behavior of the film by enrichment with niobium oxides and reduces the point defect density and their mobility across the film, lowering pitting initiation susceptibility. With the high resistance to dissolution and rapid repassivation ability in the aggressive Hanks’ simulated body fluid, the TiHfZrNb alloys confirm their great potential as new materials for biomedical implants and warrant further biocompatibility testing.more » « less
-
Tanji, Ayoub; Hermawan, Hendra; Boehlert, Carl J. (, Materials)Zinc (Zn) alloys, particularly those incorporating magnesium (Mg), have been explored as potential bioabsorbable metals. However, there is a continued need to enhance the corrosion characteristics of Zn-Mg alloys to fulfill the requirements for biodegradable implants. This work involves a corrosion behavior comparison between severe-plastic-deformation (SPD) processed cast Zn-Mg alloys and their hybrid counterparts, having equivalent nominal compositions. The SPD processing technique used was high-pressure torsion (HPT), and the corrosion behavior was studied as a function of the number of turns (1, 5, 15) for the Zn-3Mg (wt.%) alloy and hybrid and as a function of composition (Mg contents of 3, 10, 30 wt.%) for the hybrid after 15 turns. The results indicated that HPT led to multimodal grain size distributions of ultrafine Mg-rich grains containing MgZn2 and Mg2Zn11 nanoscale intermetallics in a matrix of coarser dislocation-free Zn-rich grains. A greater number of turns resulted in greater corrosion resistance because of the formation of the intermetallic phases. The HPT hybrid was more corrosion resistant than its alloy counterpart because it tended to form the intermetallics more readily than the alloy due to the inhomogeneous conditions of the materials before the HPT processing as well as the non-equilibrium conditions imposed during the HPT processing. The HPT hybrids with greater Mg contents were less corrosion resistant because the addition of Mg led to less noble behavior.more » « less
-
Tanji, Ayoub; Feng, Rui; Lyu, Zongyang; Sakidja, Ridwan; Liaw, Peter K.; Hermawan, Hendra (, Corrosion Science)
An official website of the United States government
